US-SOMO (SOlution MOdeler): versatile and reliable hydrodynamic and SAS modeling of biomacromolecules within the UltraScan AUC data analysis software

Emre Brookes and Borries Demeler

Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX, USA

Mattia Rocco Biopolymers and Proteomics, AOU-IRCCS San Martino-IST, National Institute for Research on Cancer, Genova, Italy

In collaboration also with:

Olwyn Byron, Glasgow University, Scotland, UK Patrice Vachette, CNRS-Université Paris-Sud, Orsay, FR Javier Pérez, SWING, Synchrotron SOLEIL, St. Aubin, FR.

Hydrodynamics. Stokes-Einstein's law The translational frictional coefficient of **f** a sphere of

radius **r** in a solvent of viscosity η is:

$f = 6\pi\eta r$

For a body of unknown shape having a translational frictional coefficient f, we can define the Stokes radius R_s as that of a sphere having the same f

$$R_s = r = f/6\pi\eta$$

Translational diffusion coefficient D_t : $D_t = k_b T/f$ where $k_b = Boltzmann's constant$ T = solution temperature (°K)

Sedimentation coefficient s:

 $s = (M/N_0)(1 - V_2\rho)/f$

where M = mass $N_0 = Avogadro's number$ $v_2 = partial specific volume$ $\rho = solvent density$

Early applications of hydrodynamics: representing proteins as simple geometrical objects (spheres, ellipsoids of revolution)

FIGURE 7-25. Dimensions of the ellipsoid of revolution that best account for the hydrodynamic properties (viscosity and frictional coefficient) of various protein molecules. [After W. J. Moore, *Physical Chemistry*, Prentice-Hall, Englewood Cliffs, N. J., 1972.)

Early applications of hydrodynamics: representing proteins as simple geometrical objects (spheres, ellipsoids of revolution)

Cantor & Schimmel, Biophysical Chemistry Part II: Techniques for the study of biological strcuture and function

The "hydration" issue

Cantor and Schimmel - Biophysical Chemistry Part II, 1980

12-1 VISCOMETRY 655

Table 12-2

Hydrations of biopolymers computed by using shapes known from x-ray diffraction or electron microscopy

			Hydration (δ_1 in g/g) based on							
Sample	Known axial ratio [§]	in the second	Viscosity			Diffusion S			Sedimentation	
Bushy stunt virus	1.0	5	0.65			0.71	N. S. W.	Alexandri	0.71	net).
Carboxypeptidase	1.25		<u> </u>			0.30			0.69	
Cytochrome c	1.48					0.18			0.24	
Hemoglobin	1.3		0.62			0.52			0.75	
Lysozyme	1.5		0.34			0.52			0.52	
Myoglobin	1.76		0.44			0.50			0.42	
Tobacco mosaic virus	18		0.32			0.1 - 0.7			0.26	

[§]Axial ratios are for prolate ellipsoids, except for cytochrome c, which is oblate.

SOURCE: After I. D. Kuntz, Jr., and W. Kauzmann, in Advances in Protein Chemistry, vol. 28, ed. C. B. Anfinsen, J. T. Edsall, and F. M. Richards (New York: Academic Press, 1974), p. 239.

Advances in Protein Chemistry 28:239-345, 1974

HYDRATION OF PROTEINS AND POLYPEPTIDES

By I. D. KUNTZ, JR. and W. KAUZMANN

Department of Pharmaceutical Chemistry, University of California, San Francisco, California, and Department of Chemistry, Princeton University, Princeton, New Jersey

I.	Introduction					•	1. 48	1.00	·		2.4.97	239
п.	Methods and Results .									A		241
	A. Thermodynamic Methods											241
	B. Kinetic Methods								•	10.16.24		283
	C. Spectroscopic Techniques	0.60 g					na da	6.13	and,	100	10.00	317
	D. Diffraction Techniques		. 33	naug.	1.0	10	Claim	Suis-	6327	iejy1	CON	327
III.	Discussion	den.		111/15			an b	c. 13	nec.	-		329
	A. Concepts of Hydration											329
	B. Sites of Hydration .											332
	C. Hydration Shells, Water	Mobi	ility,	and	Wat	ter	Struct	ure				334
	D. Energetics of Water Bind	ding		•	. s		· ·	2 13		. 10		335
	Appendix			0.00			oe. 6	inola.	1000	Siret.	1200	336
	References	·. 162	ri hi	a. 🔿	'vol	Ver	worke is	nate			1942	338

al tis Salar

Hydration from NMR freezing experiments

I. D. KUNTZ, JR. AND W. KAUZMANN

HYDRATION OF PROTEINS AND POLYPEPTIDES

327

TABLE XXII

Proposed Amino Acid Hydrations Based on Nuclear Magnetic Resonance Studies of Polypeptides^a

In agricult Resonance Statuces of I bigpeptiace

Amino acid residues ^b	Hydration
Ionic	
Asp ⁻	6
Glu-	7
Tyr-	7
Arg ⁺	3
His ⁺	4 ^d
Lys^+	4
Polar	
Asn	2
Gln	- 2°
Pro	3
Ser, Thr	2.
Trp	2*
Asp	2
Glu	2
Tyr	(3)
Arg	3
Lvs	4
Nonpolar	
Ala	1
Gly	1
Phe	(0)
Val	1
Ile, Leu, Met	10

^a After Kuntz (1971a).

^b Standard three-letter code.

^c Moles of water per mole of amino acid.

^d As Lys⁺.

• Assumed values based on one water molecule per amide plus one water molecule per side-chain polar group.

	TABLE	XXIII	
Prediction of Protein	Hydration from	Composition	and Polypeptide Results ^a

Hydration (g H	ion (g H_2O/g protein)		
Calculated ^b	Observed ^e		
0.36	0.34		
0.45	0.42		
0.39	0.34		
0.36	0.33		
0.37	0.33		
0.45	0.40		
0.42	0.42		
0.45	0.44		
0.32ª	0.30		
	Hydration (g F Calculated ^b 0.36 0.45 0.39 0.36 0.37 0.45 0.42 0.45 0.42 0.45 0.32 ^d		

^a After Kuntz (1971a); see Table XXII.

^b Calculation assumes that *all* residues are fully hydrated. This is perhaps reasonable for the denatured proteins but leads to a small positive error unless allowance is made for "buried" groups. This correction was done for lysozyme, yielding a calculated value of 0.335.

^c NMR freezing experiments.

^d Calculation assumes that all carboxyl groups are uncharged at pH 3.

Reconciling hydration dynamics with hydrodynamics

PNAS 100:12135-12140, 2003

Biomolecular hydration: From water dynamics to hydrodynamics

Bertil Halle* and Monika Davidovic

Department of Biophysical Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden

1-The static picture of biomolecular hydration is fundamentally inconsistent with magnetic relaxation dispersion experiments and molecular dynamics simulations, which both reveal a highly dynamic interface where rotation and exchange of nearly all water molecules are several orders of magnitude faster than biomolecular diffusion.

2-Waters near the biomolecular surface have a different density, and alter the local viscosity. It turns out that considering a number of "tightly bound", static water molecules compensate well for this local viscosity effect, otherwise very hard to be directly taken into account. Bead modeling methods: from an idea of V. Bloomfield, further developed by D.C. Teller, to HYDROPRO (J. García de la Torre)

FIGURE 1 Two-dimensional analogies of the various model types. (A) A bead model (in strict sense). (B) Shell model. (C) Filling model. (D) Rough-shell model.

Carrasco & García de la Torre Bioph. J. 75, 3044-3057, 1999

FIGURE 2 (A) A bead-per-atom (BPA) model of lysozyme, which we take as the primary hydrodynamic particle (PHP) that represents this protein. The atomic element radius (AER) is a = 3 Å. (B) A shell model (SHE), derived from the PHP, used for hydrodynamic calculations. The radius of the small beads in this case is $\sigma = 0.8$ Å.

García de la Torre, Huertas & Carrasco Bioph. J. 78, 719-730, 2000

Low Reynolds number hydrodynamics

$$\begin{pmatrix} \mathbf{F} \\ \mathbf{T}_{\mathbf{O}} \end{pmatrix} = \begin{pmatrix} \mathbf{\Xi}_{\mathbf{t}} & \mathbf{\Xi}_{\mathbf{O},\mathbf{c}}^{\mathbf{T}} \\ \mathbf{\Xi}_{\mathbf{O},\mathbf{c}} & \mathbf{\Xi}_{\mathbf{O},\mathbf{r}} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{\mathbf{O}} \\ \boldsymbol{\omega} \end{pmatrix}$$

 $\mathbf{F}_{i} \left(6\pi \eta_{0} \sigma_{i} \right)^{-1} + \sum_{j=1}^{N} \mathbf{T}_{ij} \cdot \mathbf{F}_{j} = (\mathbf{u}_{i} - \mathbf{v}_{i}^{0})$

$$\mathbf{T}_{ij} = (8\pi \eta_0 \mathbf{R}_{ij})^{-1} \left[\mathbf{I} + \frac{\mathbf{R}_{ij} \mathbf{R}_{ij}}{\mathbf{R}_{ij}^2} + \frac{(\sigma_i^2 + \sigma_j^2)}{\mathbf{R}_{ij}^2} \left(\frac{1}{3} \mathbf{I} - \frac{\mathbf{R}_{ij} \mathbf{R}_{ij}}{\mathbf{R}_{ij}^2} \right) \right]$$

$$\sum_{j=1}^{N} \mathbf{B}_{ij} \cdot \mathbf{F}_{j} = (\mathbf{u}_{i} - \mathbf{v}_{i}^{0}) \qquad \mathbf{B}_{ij} = \delta_{ij} \frac{\mathbf{I}}{6\pi \eta_{0} \sigma_{i}} + (1 - \delta_{ij}) \mathbf{T}_{ij} \qquad C = \mathcal{B}^{-1}$$

$$\Xi_t = \sum_i \sum_j \mathbf{C}_{ij} = \Xi_{O,c} = \sum_i \sum_j \mathbf{U}_i \cdot \mathbf{C}_{ij} = \Xi_{O,r} = -\sum_i \sum_j \mathbf{U}_i \cdot \mathbf{C}_{ij} \cdot \mathbf{U}_j + 6 \eta_0 \mathbf{V} \mathbf{I}$$

TO COMPUTE THE PARAMETERS THAT **CAN BE MEASURED EXPERIMENTALLY, A COMPROMISE MUST BE REACHED BETWEEN A GOOD REPRESENTATION OF** THE SURFACE OF THE PROTEIN AND A LOW NUMBER OF FRICTIONAL ELEMENTS (BEADS).

THE LAYER OF "TIGHTLY BOUND" WATER OF HYDRATION MUST ALSO BE TAKEN INTO ACCOUNT Early programs developed by the Byron/Rocco groups:

BEAMS (BEAds Modeling System) Spotorno et al., Eur. Biophys. J. 25, 373-384, 1997.

AtoB Byron, Biophys J. 72, 408-415, 1997.

SOMO (SOlution MOdeler) Rai et al., Structure 13, 723-744, 2005;

Method SOMO (SOlution MOdeller): generating mediumresolution bead models from atomic coordinates

Main features:

1 bead/side chain & 1 bead/main chain. Water of hydration, based on residues, is included in each bead.

$A \rightarrow B$ After ASA screening, exposed side -chains beads are placed.

 $B \rightarrow C$ Beads overlapping by more than a preset threshold can be fused together. Overlaps are then removed, reducing the radii and outward translating the centers of exposed beads.

 $C \rightarrow D$ Exposed peptide bond beads are placed and overlaps removed.

 $D \rightarrow E$ Buried beads are placed and overlaps removed. They should be excluded from the computations of the hydrodynamic parameters.

Rai et al., Structure, May 2005

The "peptide bond" rule

The "peptide bond" rule

Improved AtoB (Grid) method: generating variable-resolution bead models from atomic coordinates

Main features:

1 bead/cube in a variable-size cubic grid. Water of hydration, based on atom values, included in each bead.

 $A \rightarrow B$ All the beads are generated and placed (CM or CC).

B→C Beads are screened for surface accessibility (ASA; red, accessible; orange, buried).

 $C \rightarrow D$ Overlaps between the exposed beads are then removed, reducing the radii and outward translating the beads' centers.

 $D \rightarrow E$ Overlaps between the buried beads are then removed, and they are re-screened for accessibility. Buried beads are excluded from hydrodynamic computations.

Eur Biophys J DOI 10.1007/s00249-009-0418-0

ORIGINAL PAPER

The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule

Emre Brookes · Borries Demeler · Camillo Rosano · Mattia Rocco

mabi.200900474

Developments in the US-SOMO Bead Modeling Suite: New Features in the Direct Residue-to-Bead Method, Improved Grid Routines, and Influence of Accessible Surface Area Screening^a

Emre Brookes, Borries Demeler, Mattia Rocco*

n SOMO Solution Modeler						
Lookup Tables SOMO MD PDB	3 Configuration		File			
PI	OB Functions:		All options set to default values			
Select Lookup Table	C:\Program Files\UltraScan\etc\somo.residue		PDB TITLE : EFFECTS OF TEMPERATURE ON PROTEIN STRUCTURE AND DYNAMICS: X-			
Batch Mode/Cluster Operation]		PDB TITLE : AT NINE DIFFERENT TEMPERATURES FROM 98 TO 320 K			
Load Single PDB File	rogram Files\Ultrascan	\somo\demo\8RAT.pdb	Residue sequence from 8RAT.pdb: LYS GULTHE ALA ALA ALA LYS PHE GULARG GUNHIS MET ASP SER SER THE SER ALA ALA SER SER SER ASN			
Please select a PDB Structure:	Model: 1		TYR CYS ASN GLN MET MET LYS SER ARG ASN LEU THR LYS ASP ARG CYS LYS PRO VAL ASN THR PHE VAL HIS GULSER LEU ALA ASP VAL GIN ALA VAL CYS SER GIN LYS ASN VAL ALA CYS LYS ASN GLY GIN THR ASN CYS			
View/Edit PDB File PDB Editor]		TYR GLN SER TYR SER THR MET SER ILE THR ASP CYS ARG GLU THR GLY SER SER LYS TYR PRO ASN CYS ALA			
SAXS/SANS Functions]		ALA SER VAL			
Run DMD]		Sequence in one letter code:			
BD			VNTFVHESLADVOAVCSOKNVACKNGOTNCYOSYSTMSITDC			
Bead	Bead Model Functions:		RETGSSKYPNCAYKTTQANKHIIVACEGNPYVPVHFDASV			
Bead Model Suffix: A20R50hiOT / A10R30syOThyG5 / A20R		0syOThyG5 / A20R50	Checking the pdb structure for model 1 Loaded pdb file : ok			
Overwrite existing filenames Add auto-generated suffix		suffix				
Build SoMo Bead Model	Build AtoB (Gri	d) Bead Model	Model: 1 vbar 0.710 cm^3/g			
Build SoMo Overlap Bead Model	Grid Existing	Bead Model	Model: 1 Chain: A Molecular weight 13683.9 Daltons, Volume (from vbar) 16122 A^3, atomic volume 16514.2 A^3 average electron density 0.441014 A^-3			
View ASA Results	Visualize E	lead Model	Model 1 Rg: 1.43 nm			
Batch Mode/Cluster Operation	View Bead	Model File	Model: 1 Molecular weight 13683.9 Daltons, Volume (from vbar) 16122 A^3, atomic volume 16514.2 A^3			
Load Single Bead Model File	not se	lected	average electron density 0.441014 A^-3 8RAT model 1 13.68 kD, Rg 14.34 A, (Rg/6.5)^3: 10.75 21.5 %			
SAXS/SANS Functions	Automatically Calco	late Hydrodynamics				
Hydrodynamic Calculations:			8RAT models selected: 1			
Calculate RB Hydrodynamics SMI	Calculate RB Hyd	rodynamics ZENO				
Show Hydrodynamic Calculations	Open Hydrodynam	ic Calculations File				
Select Parameters to be Saved	Save parameters to	file				
BEST Model classifier	Stop	Close				
Help Config						

Lookup Tables SMO< MD PDB Configuration File 1 will be included PDB Configuration PDB Enunctions: PDB Configuration <	SOMO Solution	Modeler				
ZNO calculation stat: ZNO calculation stat: Calculate hydrodynamics (Zeno) completed Vaualariag model 1 Batch Mode/Cluster Operation Al options set to default values Batch Mode/Cluster Operation Al options set to default values New/Edit PDB File Pope Editor Wew/Edit PDB File Model: 1 Mode/Cluster Operation Model: 1 View/Edit PDB File PDB Editor SAXX/S/SANS Functions Model: 1 Badd Model Functions: Badd my bead model for a tomic model Computing ASA va ASABI Reput Boogning stage 1 Bead Model Suffix: A20R50hrOT-so Bead Model Suffix: A20R50hrOT-so Build SoMo Read Model Build AtoB (Gid) Bead Model Build SoMo Verlap Bead Model Gid Atobel File View Rak Results Visualize Bead Model View Bead Model File SAXT Batch Mode/Cluster Operation View Bead Model Build SoMo Verlap Bead Model Gid Atobel File Build SoMo Verlap Bead Model Gid Rel Existing Bead Model Batch Mode/Cluster Operation View Bead Model Batch Mode/Cluster Operation View Bead Model	Lookup Tables S	Lookup Tables SOMO MD PDB Configuration			File 1 will be included	
Select Lookup Table C:\Program Files\UltraScan\etc\somo.residu Yeualiang model 1 Weualiang model 1 Batch Mode/Cluster Operation Load Single PDB File rogram Files\Ultrascan\somo\demo\SRAT.pdb RAT model selected : 1 Please select a PDB Structure: Model: 1 Building the bed model for RAT model 1 Creating the pdb structure: View/Edit PDB File PDB Edito Model: 1 Creating the pdb structure: SAXSYSANS Functions Building the bed model for RAT model 1 Creating beads from atoms model Computing ASA MASAB1 Return from Computing AS		PD	B Functions:		ZENO calculation start Calculate hydrodynamics (Zeno) completed	
Batch Mode/Cluster Operation Al options set to default values Load Single PDB File rogram Files/Ultrascan/somo/demo/SRAT.pdb sRAT models selected: 1 Please select a PDB Structure: Model: 1 Building the bed model for SRAT model 1 View/Edit PDB File PDB Editor Files/Ultrascan/somo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb SAXS/SANS Functions Model: 1 Files/Ultrascan/somo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb Run DMD Files/Ultrascan/somo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb Both Both Files/Ultrascan/somo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb Both Demo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb Both Both Files/Ultrascan/somo/demo/SRAT.pdb Files/Ultrascan/somo/demo/SRAT.pdb Both Boddel Functions: Bead Model Selected: 1 Files/Ultrascan/somo/demo/SRAT.pdb Bead Model Suffix Al auto-generated suffix Beon popping tage 1 Beads/sopped 0. Build Softo Bead Model Guide Ead Model Files/Edit values Beads/sopped 0. Build Softo Bead Model Guide Ead Model Files/Edit values	Select Loo	okup Table	C:\Program Files\Ultra	Scan\etc\somo.residue	Visualizing model 1 Peptide Bond Rule is on for this PDB	
Load Single PDB File rogram FilesUltrascan\somo\demo\8RAT.pdb sRAT models selected: 1 Please select a PDB Structure: Model: 1 Building the bead model for 8RAT model 1 View/Edit PDB File PDB Editor Checking the public buckure Processing from a tomic model SAXS/SANS Functions Functions Processing from a tomic model Creating has the model from a tomic model Run DMD Functions: Bo Bo Bo Bo Bo	Batch Mode/Cl	uster Operation			All options set to default values	
Please select a PDB Structure: Model: 1 Building the bead model for SRAT model 1 View/Edit PDB File PDB Editor Checking the pb structure ok Checking the pb structure ok SAXS/SANS Functions Run DMD File are Statum in 2 chain(s) in this model Run DMD Bod Checking the AsA Barmodel Bod Bead Model Functions: Bead Model Functions: Bead Model Suffix A20R50hiOT-so Beagin poping stage 1 Bead Model Suffix A20R50hiOT-so Beagin poping stage 1 Build SoMo Bead Model Build AtoB (Grid) Bead Model Bead poped 0. Build SoMo Overlap Bead Model Build AtoB (Grid) Bead Model Bead poped 0. Bead Model Cluster Operation View ASA Results Visualize Bead Model Bead poped 0. Bead Model File Build AtoB (Grid) Bead Model Pepin radal reduction stage 1 Bead poped 0. Bead poped 0. Bead poped 0. Bead poped 0. Bead poped 0. Build SoMo Overlap Bead Model Grid Existing Bead Model Pepin radal reduction stage 1 Build SoMo Overlap Bead Model Grid Existing Bead Model Pepin stade reduction stage 2 Build SoMo Overlap Bead Model File SRAT_1 Al options set to	Load Single	e PDB File	rogram Files\Ultrascan	\somo\demo\8RAT.pdb	8RAT models selected: 1	
View/Edit PDB File PDB Editor SAXS/SANS Functions Creating beads from atomic model Run DMD Creating beads from atomic model BD Ether for Computing SA BD Bead Model Functions: Bead Model Suffix A20R50hiOT-so Bead Model Suffix A20R50hiOT-so Bead Model Suffix A20R50hiOT-so Bead Model Suffix A20R50hiOT-so Bead Model Suffix Bead Model Overwrite existing filenames Add auto-generated suffix Build SoMo Bead Model Build AtoB (Grid) Bead Model Build SoMo Overlap Bead Model Grid Existing Bead Model Build SoMo Overlap Bead Model Grid Existing Bead Model Build SoMo Overlap Bead Model Grid Existing Bead Model Batch Mode/Cluster Operation View Bead Model File SAXS/SANS Functions: Automatically Calculate Hydrodynamics SAXS/SANS Functions: Automatically Calculate Hydrodynamics SAXS/SANS Functions: Automatically Calculate Hydrodynamics Batch Mode/Cluster Operation View Bead Model File SAXS/SANS Functions: Automatically Calculate Hydrodynamics Show Hydrodynamic Calculations: <td< td=""><td>Please select a P</td><td>DB Structure:</td><td>Model: 1</td><td></td><td>Building the bead model for 8RAT model 1</td></td<>	Please select a P	DB Structure:	Model: 1		Building the bead model for 8RAT model 1	
SAXS/SANS Functions There are 951 atoms in 2 chain(§) in this model Run DMD Creating beads from atomic model BD Return from Computing ASA via ASAB1 Return from Computing ASA via ASAB1 Anhydrous volume 16400.33 Ar-3 BD Bead Model Functions: Bead Model Suffix A 20R50hiOT-so Begin popping stage 1 Begin popping stage 1 Bead Model Suffix A 20R50hiOT-so Begin popping stage 2 Begin popping stage 2 Ø Overwrite existing filenames A Add auto-generated suffix Build SoMo Bead Model Build AtoB (Grid) Bead Model Build SoMo Overlap Bead Model Grid Existing Bead Model Build SoMo Overlap Bead Model Grid Existing Bead Model View ASA Results Visualize Bead Model View ASA Results Visualize Bead Model Batch Mode/Cluster Operation View Bead Model File SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic Calculations Model 1 will be induded Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics SZEMO Select Parameters to file Saye parameters to file Supermatrix inversion Cycle 1 of 3 Saye parameters	View/Edit PDB F	ile PDB Editor			Checking the pdb structure PDB structure ok	
Run DMD Computing ASA Via ASAB1 BD Return from Computing ASA Anhytous volume 16490.33 A^3 Anhytous volume 16490.33 A^3 Ther are 24 beads in this model before popping Bead Model Functions: Bead Model Suffix: A20R50hiOT-so Bead Model Suffix: A20R50hiOT-so Beign popping stage 1 Beads popped 0. Begin proping stage 2 Beads popped 0. Build SoMo Bead Model Build AtoB (Grid) Bead Model Build SoMo Overlap Bead Model Grid Existing Bead Model View ASA Results Visualize Bead Model View ASA Results Visualize Bead Model Batch Mode/Cluster Operation View Bead Model File SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic Calculations: Model 1 Weiter Calculations Model Later B Hydrodynamics SMI Calculate RB Hydrodynamics Calculations File Select Parameters to be Saved Save parameters to file Supermatrix Inversion (v/dz 2 of 3 Supermatrix Inversion (v/dz 3 of 3 BEST Model cassifier Model Late hydrodynamic Calculations File Supermatrix Inversion (v/dz 3 of 3 Supermatrix Inversion (v/dz 3 of 3	SAXS/SAN	S Functions			There are 951 atoms in 2 chain(s) in this model Creating beads from atomic model	
BD Anhydrous volume 16480.33 A^3 There are 246 back in this model before popping Bead Model Suffix A20R50hiOT-so Bead Model Suffix A20R50hiOT-so Bead Model Suffix A20R50hiOT-so Beign popping stage 1 Beign popping stage 2 Bead Model Suffix Add auto-generated suffix Build SoMo Bead Model Build AtoB (Grid) Bead Model Beign popping stage 2 Beeds popped 0. Beign popping stage 2 Beeds popped 0. Beign radial reduction stage 1 Beegn radial reduction stage 2 Build SoMo Bead Model Build AtoB (Grid) Bead Model Beegn popping stage 3 Beegn radial reduction stage 3 Frinshed with popping and radial reduction View ASA Results Visualize Bead Model Beign radial reduction stage 3 Derevisually build beads are exposed by rechecking beads O previsually build beads are exposed by rechecking beads Derevisual Devision beads Build bead model completed All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Beign hydrodynamic calculations Model Later BHydrodynamic Calculations Model 1 will be included Calculate RB Hydrodynamic Calculations File Su	Run	DMD			Computing ASA via ASAB1 Return from Computing ASA	
Bead Model Functions: Begin popping stage 1 Bead Model Suffix: A20R50hiOT-so Begin radial reduction stage 1 Ø Overwrite existing filenames Ø Add auto-generated suffix Begin radial reduction stage 2 Build SoMo Bead Model Build AtoB (Grid) Bead Model Begin radial reduction stage 3 Build SoMo Overlap Bead Model Grid Existing Bead Model Begin radial reduction stage 3 Wiew ASA Results Visualize Bead Model Begin radial reduction stage 3 View ASA Results Visualize Bead Model Rechecking beads Overvicuse View ASA Results Visualize Bead Model Beads popped 0. Batch Mode/Cluster Operation View Bead Model File Finished with popping and radial reduction stage 3 Build bead model File BRAT_1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic calculations Model 1 will be induded Calculate RB Hydrodynamic Calculations File Supermatrix inversion Cyde 1 of 3 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cyde 2 of 3 Supermatrix inversion Cyde 2 of 3 Supermatrix inversion Cyde 2 of 3 BEST Model Classifier Stop	В	D			Anhydrous volume 16480.33 A^3 There are 246 beads in this model before popping	
Bead Model Suffix: A20R50hiOT-so Begin radial reduction stage 1 Overwrite existing filenames ✓ Add auto-generated suffix Begin poppin gates 2 Build SoMo Bead Model Build AtoB (Grid) Bead Model Begin radial reduction stage 1 Build SoMo Verlap Bead Model Grid Existing Bead Model Begin radial reduction stage 3 Build SoMo Overlap Bead Model Grid Existing Bead Model Begin radial reduction stage 3 View ASA Results Visualize Bead Model Begin radial reduction stage 3 Finished with popping and radial reduction Rechecking beads Derivisity buried beads Batch Mode/Cluster Operation View Bead Model File Bild bead model completed Load Single Bead Model File 8RAT_1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic calculations Beads popped Overvice Still Calculate RB Hydrodynamics ZENO Processing model 1 bead count 246 vbar 0.71 Using 98 beads for the matrix Supermatrix inversion Cycle 1 of 3 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 2 of 3 BEST Model classifier Stop Close Help Config St		Bead M	Model Functions:		Begin popping stage 1 Beads popped 0.	
✓ Overwrite existing filenames ✓ Add auto-generated suffix Bead popped 0. Build SoMo Bead Model Build AtoB (Grid) Bead Model Begin proping stage 3 Build SoMo Overlap Bead Model Grid Existing Bead Model Begin proping stage 3 Build SoMo Overlap Bead Model Grid Existing Bead Model Begin proping stage 3 View ASA Results Visualize Bead Model Begin proping reduction stage 3 Batch Mode/Cluster Operation View Bead Model File Build bead model completed Load Single Bead Model File SRAT_1 All options set to default values Back Nydrodynamic Calculations: Automatically Calculate Hydrodynamics ZENO Processing model 1 bead count 246 vbar 0.71 Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Supermatrix inversion Cycle 3 of 3 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 3 of 3 BEST Model classifier Stop Close	, Bead Model Suffix	•	A20R50	lhiOT-so	Begin radial reduction stage 1 Begin popping stage 2	
Build SoMo Bead Model Build AtoB (Grid) Bead Model Begin popping stage 3 Beads popped 0. Begin radial reduction stage 3 Finished with popping and radial reduction Rechecking beads 0 previously buried beads are exposed by rechecking Wiew ASA Results Visualize Bead Model Begin nadial reduction stage 3 Finished with popping and radial reduction Batch Mode/Cluster Operation View Bead Model File BRAT_1 Load Single Bead Model File 8RAT_1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin nadial to ductions Model 1 will be induded Calculate RB Hydrodynamics ZENO Processing model 1 bead count 246 vbar 0.71 Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Supermatrix inversion Cycle 2 of 3 Supermatrix inversion Cycle 3 of 3 BEST Model classifier Stop Close	Overwrite exis	ting filenames	Add auto-generated	l suffix	Beads popped 0. Begin radial reduction stage 2	
Build SoMo Overlap Bead Model Grid Existing Bead Model Begin radial reduction stage 3 View ASA Results Visualize Bead Model Finished with popping and radial reduction Batch Mode/Cluster Operation View Bead Model File Provisualize Bead Model Load Single Bead Model File BRAT_1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic calculations Hydrodynamic Calculations: Model 1 will be included Processing model 1 bead count 246 vbar 0.71 Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Supermatrix inversion Cycle 2 of 3 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 3 of 3 BEST Model classifier Stop Close Help Config 100%	Build SoMo	Bead Model	Build AtoB (Gr	id) Bead Model	Begin popping stage 3 Beads popped 0.	
View ASA Results Visualize Bead Model Rechecking beads 0 previously buried beads are exposed by rechecking Previously buried beads are exposed by rechecking Privibusly buried beads are exposed by rechecking Privibusly buried beads Build bead model completed Load Single Bead Model File 8RAT_1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic calculations Processing model 1 bead count 246 vbar 0.71 Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Supermatrix inversion Cyde 1 of 3 Supermatrix inversion Cyde 2 of 3 Supermatrix inversion Cyde 2 of 3 Supermatrix inversion Cyde 3 of 3 Supermatrix inversion Cyde 3 of 3 BEST Model classifier Stop Close Close Supermatrix inversion Cyde 3 of 3 Help Config 100% Close Contract Calculation Contract Contrac	Build SoMo Ove	rlap Bead Model	Grid Existing	Bead Model	Begin radial reduction stage 3 Finished with popping and radial reduction	
Batch Mode/Cluster Operation View Bead Model File Finished rechecking beads Load Single Bead Model File 8RAT_1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic calculations Begin hydrodynamic calculations Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Processing model 1 bead count 246 vbar 0.71 Using 98 beads for the matrix Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Supermatrix inversion Cycle 1 of 3 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 3 of 3 BEST Model classifier Stop Close Help Config 100%	View ASA	A Results	Visualize E	Bead Model	Rechecking beads 0 previously buried beads are exposed by rechecking	
Load Single Bead Model File 8RAT_1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic calculations Begin hydrodynamic calculations Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Model 1 will be included Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Processing model 1 bead count 246 vbar 0.71 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 1 of 3 BEST Model classifier Stop Close Help Config 100% Vertice	Batch Mode/Cl	uster Operation	View Bead	Model File	Finished rechecking beads Build bead model completed	
SAXS/SANS Functions Automatically Calculate Hydrodynamics Hydrodynamic Calculations: Begin hydrodynamic calculations Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Select Parameters to be Saved Save parameters to file BEST Model classifier Stop Close	Load Single B	ead Model File	8R/	AT_1	All options set to default values	
Hydrodynamic Calculations: Model 1 will be included Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Processing model 1 bead count 246 vbar 0.71 Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Using 98 beads for the matrix Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 1 of 3 BEST Model classifier Stop Close Help Config 100%	SAXS/SAN	S Functions	Automatically Calc	ulate Hydrodynamics	Begin hydrodynamic calculations	
Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Select Parameters to be Saved Save parameters to file BEST Model classifier Stop Close Help Config 100% Forcessing model 1 bead count 246 vbar 0.71	Hydrodynamic Calculations:			Model 1 will be included		
Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Using 98 beads for the matrix Select Parameters to be Saved Save parameters to file Using 98 beads for the matrix BEST Model classifier Stop Close Close Help Config 100% Config 100%	Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO		rodynamics ZENO	Processing model 1 bead count 246 vbar 0.71		
Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 2 of 3 Supermatrix inversion Cycle 3 of 3 Calculate hydrodynamics completed BEST Model classifier Stop Close Close <th< td=""><td colspan="2">Show Hydrodynamic Calculations Open Hydrodynamic Calculations File</td><td>ic Calculations File</td><td colspan="3">Using 98 beads for the matrix Supermatrix inversion Cycle 1 of 3</td></th<>	Show Hydrodynamic Calculations Open Hydrodynamic Calculations File		ic Calculations File	Using 98 beads for the matrix Supermatrix inversion Cycle 1 of 3		
BEST Model classifier Stop Close Help Config 100%	Select Parameters to be Saved		Save parameters to file		Supermatrix inversion Cycle 2 of 3 Supermatrix inversion Cycle 3 of 3	
Help Config 100%	BEST	Model classifier	Stop	Close	Calculate hydrodynamics completed	
	Help	Config	100%			

Layout and features of US-SOMO, integrated in UltraScan and available for Linux, Win, and Mac							
Add/Edit <u>H</u>	ybridizatio	on	File 1 will be included				
Add/Edit <u>A</u> f	tom	,	ZENO calculation start Calculate hydrodynamics (Zeno) completed Visualizing model 1 Peptide Bond Rule is on for this PDB				
Add/Edit <u>R</u>	esidue	lt	All options set to default values 8RAT models selected: 1				
Add/Edit <u>S</u>	AXS coeffi	cients	Building the bead model for 8RAT model 1 Checking the pdb structure PDB structure ok				
SAXS/SANS Functions			Creating beads from atomic model				
Run DMD			Return from Computing ASA Anhydrous volume 16480.33 A^3				
BD			There are 246 beads in this model before popping Begin popping stage 1				
Bead	Model Functions:		Beads popped 0. Beads radial reduction stage 1				
Bead Model Suffix:	A20R50)hiOT-so	Begin popping stage 2 Begin popping stage 2				
Overwrite existing filenames	Add auto-generated	d suffix	Begin radial reduction stage 2				
Build SoMo Bead Model	Build AtoB (Gr	id) Bead Model	Begin popping stage 3 Beads popped 0.				
Build SoMo Overlap Bead Model	Grid Existing	g Bead Model	Begin radial reduction stage 3 Finished with popping and radial reduction				
View ASA Results	Visualize B	Bead Model	Rechecking beads 0 previously buried beads are exposed by rechecking				
Batch Mode/Cluster Operation	View Bead	Model File	Finished rechecking beads Build bead model completed				
Load Single Bead Model File	Bead Model File 8RAT_1		All options set to default values				
SAXS/SANS Functions Automatically Calculate Hydrodynamics		ulate Hydrodynamics	Begin hydrodynamic calculations				
Hydrodynamic Calculations:			Model 1 will be included				
Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO		rodynamics ZENO	Processing model 1 bead count 246 vbar 0.71				
Show Hydrodynamic Calculations Open Hydrodynamic Calculations File		ic Calculations File	Using 98 beads for the matrix Supermatrix inversion Cycle 1 of 3				
Select Parameters to be Saved	Save parameters to	o file	Supermatrix inversion Cycle 2 of 3 Supermatrix inversion Cycle 3 of 3				
BEST Model classifier	Stop	Close	Calculate hydrodynamics completed				
Help Config	10	0%					

SOMO Solution Modeler	
Lookup Tables SOMO MD PDB Configuration	File 1 will be included
1: Define Resid	lue Properties:
Load Atom Definition File	/usr/local/ultrascan/etc/somo.atom
Load Residue Definition File	/usr/local/ultrascan/etc/somo.residue
Residue Name:	TYR
Description:	Tyrosine
Number of Atoms in Residue:	¥ × 12 • ± ±
Number of Beads for Residue:	₹ ₹ 7 2
Residue Type:	Amino Acid
Residue anhydrous mol. vol. (A^3):	197.00
Residue partial spec. vol. (cm^3/g):	0.708
Max. Accessible Surface Area (A^2):	228.00
Number of Residues in File: 74	11: Amino Acid, HIS (Histidine)
Accept Residue and Continue	12: Amino Acid, PHE (Phenylalanine
	Amino Acid, LYK (Tyrosine)
Help Config 100%	

Layout and features of US-SOMO, integrated in UltraScan and available for Linux, Win, and Mac					
🎄 SOMO Solution Modeler					
Lookup Tables SOMO MD PDB	Configuration		File 1 will be included		
	2. Define R	esidue Ato	oms:		
Select Residue Atom	to be defined	Atom 1: N	(N3H1, Positioning: no) 👻		
Select Atom from Lo	okup Table:	Ν	-		
Select Hybridization	for Atom:	N3H1	▼		
Atom determines Position:		🗖 (Check i	f true)		
Hydration Number fo	or Atom:	₹ ₹ • 1			
Assign Current Atom			Continue		
Build SoMo Bead Model	Build AtoB (Gri	d) Bead Model	Begin popping stage 3 Beads popped 0.		
Build SoMo Overlap Bead Model	Grid Existing	Bead Model	Begin radial reduction stage 3 Finished with popping and radial reduction		
View ASA Results	Visualize E	ead Model	Rechecking beads 0 previously buried beads are exposed by rechecking		
Batch Mode/Cluster Operation	View Bead	Model File	Finished rechecking beads Build bead model completed		
Load Single Bead Model File	8RA	π_1	All options set to default values		
SAXS/SANS Functions Automatically Calculate		Ilate Hydrodynamics	Begin hydrodynamic calculations		
Hydrodynamic Calculations:			Model 1 will be included		
Calculate RB Hydrodynamics SMI Calculate RB Hydrody		odynamics ZENO	Processing model 1 bead count 246 vbar 0.71		
Show Hydrodynamic Calculations Open Hydrodynamic C		c Calculations File	Using 98 beads for the matrix Supermatrix inversion Cycle 1 of 3		
Select Parameters to be Saved Save parameters to file		file	Supermatrix inversion Cycle 2 of 3 Supermatrix inversion Cycle 3 of 3		
The second se			Calculate budged uppmice completed		
BEST Model classifier	Stop	Close			

82

SOMO Solution Modeler		
Lookup Tables SOMO MD PDB Config	guration File 1 will be inc	<u>lu</u> ded
3. Define Resid	ue Bead Properties:	art amics (Zeno) completed
Select Residue Bead to be defined:	Bead 1: defined 🔹	i on for this PDB
Select Bead Color:	Blue (1)	fault values
Select Positioning Method:	Center of Gravity	≥d: 1
This Bead is part of the:	Backbone C Sidechain	In the second se
Currently defined Atoms for Bead:	Select Atom for Bead (multi-selection OK):	s in 2 chain(s) in this model 1 atomic model
Atom 1: N (N3H1, Positioning: no) Atom 2: CA (C4H1, Positioning: no) Atom 3: C (C3H0, Positioning: yes) Atom 4: O (O1H0, Positioning: yes)	Atom 1: N (N3H1, Positioning: no) Atom 2: CA (C4H1, Positioning: no) Atom 3: C (C3H0, Positioning: yes) Atom 4: O (O1H0, Positioning: yes) Atom 5: CB (C4H2, Positioning: no) Atom 6: CG (C3H0, Positioning: no) Atom 7: CD1 (C3H1, Positioning: no) Atom 8: CD2 (C3H1, Positioning: no) Atom 9: CE1 (C3H1, Positioning: yes) Atom 10: CE2 (C3H0, Positioning: yes)	ASAB1 ting ASA 16480.33 A^3 s in this model before popping 1 n stage 1 2 n stage 2 3 n stage 3 ig and radial reduction beads are exposed by rechecking beads
Bead Volume:	64.90	npleted
Bead Mol. Weight:	56.05	Fault values
Bead Hydration from Atoms' Values:	1.000000	ied
Override Bead Hydration Value:		pead count 246 vbar 0.71
Bead hydrated Volume, Radius:	88.94 A^3, 2.77 A	he matrix In Cycle 1 of 3
Accept Bead Definition	Reset	in Cycle 2 of 3 in Cycle 3 of 3 amics completed
Add Residue to File	Delete Residue	
Help	Close	

Layo	Layout and features of US-SOMO, integrated in UltraScan and available for Linux, Win, and Mac						
<u>A</u> SA (Calculatio	on					
<u>S</u> oMo	Overlap	Reduction		File 1 will be included ZENO calculation start Calculate hydrodynamics (Zeno) completed Visualizing model 1			
AtoB	(Grid) <u>O</u>	verlap Redu	iction	All options set to default values			
<u>H</u> ydro	odynami	c Calculatio	ns	BRAT models selected: 1 Building the bead model for 8RAT model 1			
<u>M</u> isce	llaneous	Options		Checking the pdb structure PDB structure ok There are 951 atoms in 2 chain(s) in this model			
<u>B</u> ead Model Output			Creating beads from atomic model Computing ASA via ASAB1 Return from Computing ASA Anhydrous volume 16480.33 A^3 There are 246 beads in this model before popping				
<u>G</u> rid Functions (AtoB)			Begin popping stage 1 Beads popped 0. Begin radial reduction stage 1				
SA <u>X</u> S	Options			Begin popping stage 2 Beads popped 0. Begin radial reduction stage 2			
Build SoMo I	Bead Model	Build AtoB (Gri	d) Bead Model	Begin popping stage 3 Beads popped 0.			
Build SoMo Over	rlap Bead Model	Grid Existing	Bead Model	Begin radial reduction stage 3 Finished with popping and radial reduction			
View ASA	Results	Visualize E	lead Model	Rechecking beads 0 previously buried beads are exposed by rechecking			
Batch Mode/Clu	uster Operation	View Bead	Model File	Finished rechecking beads Build bead model completed			
Load Single Be	ad Model File	8RA	J_1	All options set to default values			
SAXS/SANS Functions Automatically Calculate Hydrodynamics		Ilate Hydrodynamics	Begin hydrodynamic calculations				
Hydrodynamic Calculations:			Model 1 will be included				
Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO		rodynamics ZENO	Processing model 1 bead count 246 vbar 0.71				
Show Hydrodynamic Calculations Open Hydrodynamic Calculations File		c Calculations File	Using 98 beads for the matrix Supermatrix inversion Cycle 1 of 3				
Select Parameters to be Saved Save parameters to file		file	Supermatrix inversion Cycle 2 of 3 Supermatrix inversion Cycle 3 of 3				
BEST	Model classifier	Stop	Close	Calculate hydrodynamics completed			
Help	Config	10)%				

Layout and features of US-SOMO, integrated in UltraScan and available for Linux, Win, and Mac X - 0 SOMO Solution Modeler Lookup Tables SOMO MD File 1 will he included PDB Configuration SOMO Accessible Surface Area Options start vnamics (Zeno) completed e is on for this PDB Accessible Surface Area Options: default values Re-check bead ASA Perform ASA Calculation Y. ected: 1 model for 8RAT model 1 -ASA Method: – structure Voronoi Tesselation (Surfrace, Tsodikov et al.) oms in 2 chain(s) in this model rom atomic model ia ASAB1 Rolling Sphere (ASAB1, Lee & Richards' Method) puting ASA e 16480.33 A^3 ads in this model before popping age 1 ASA Probe Radius (A): 1.4ction stage 1 age 2 ASA Probe Recheck Radius (A): 1.4 Ŧ ction stage 2 age 3 SOMO ASA Threshold (A^2): Ť 20ction stage 3 ping and radial reduction SOMO Bead ASA Threshold %: Ì Ţ 50 ed beads are exposed by rechecking Ŧ ng beads completed Grid ASA Threshold (A^2): 10 default values mic calculations Grid Bead ASA Threshold %: 30 duded ASAB1 Step Size (A): 1 bead count 246 vbar 0.71 or the matrix rsion Cycle 1 of 3 rsion Cycle 2 of 3 Help Close rsion Cycle 3 of 3 amics completed Help 100% Config

秦 SOMO Solution Modeler				
Lookup Tables SOMO MD PDB Conf	figuration	File 1 will be included	^	
🗙 SoMo Bead Overlap Reduc	tion Options			
SoMo Bead C	Overlap Reduction Op	ptions:		
Bead Overlap Tolerance: 🝹	5 v 0.001			
Exposed Side chain beads Exp	posed Main and side chain bead	ds Buried beads		
Overlap reduction b	etween exposed side	e chain beads is model		
Fuse Beads that overlap b	by more than:	₹ ₹ ▼ 70 ▲ ★ ★		
Remove Overlaps		re popping		
		Overlap Reduction Step Size (in %):		
Remove Overlaps synchronously:				
Remove Overlaps hierarchically (larger -> smaller)		▼ 1 ▲ ▲ by rechecking		
Outward Translation				
Help	Close		E	
Calculate RB Hydrodynamics SMI Ca	alculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Processing model 1 bead count 246			
Show Hydrodynamic Calculations Open Hydrodynamic Calculations File		Using 98 beads for the matrix Supermatrix inversion Cycle 1 of 3		
Select Parameters to be Saved Save parameters to file		Supermatrix inversion Cycle 2 of 3 Supermatrix inversion Cycle 3 of 3 Calculate hydrodynamics completed		
BEST Model classifier	Stop Close		T	
Help Config	100%			

Layout and features of US-SOMO, integrated in UltraScan and available for Linux, Win, and Mac - O X SOMO Solution Modeler Lookup Tables SOMO MD PDB Configuration File 1 will be included _ _ × eted Grid Bead Overlap Reduction Options Grid Bead Overlap Reduction Options: Bead Overlap Tolerance: 💆 🗸 0.001 놀 Exposed grid beads Buried grid beads Non-screened grid beads el 1 Overlap reduction between exposed grid beads is model Fuse Beads that overlap by more than: ž 최훞 0 bre popping 5 Remove Overlaps Overlap Reduction Step Size (in %): Remove Overlaps synchronously: * tion Ŧ Remove Overlaps hierarchically (larger -> smaller) 2 \$ by rechecking Outward Translation Close Help Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Processing model 1 bead count 246 vbar 0.71 Using 98 beads for the matrix Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Supermatrix inversion Cycle 1 of 3 Supermatrix inversion Cycle 2 of 3 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 3 of 3 Calculate hydrodynamics completed BEST Model classifier Close Stop 100% Help Config

Layout and features of US-SOMO, integrated in UltraScan and available for Linux, Win, and Mac - 0 X SOMO Solution Modeler Lookup Tables SOMO MD PDB Configuration File 1 will be included SOMO Grid Function Options (AtoB) - D × eted SOMO Grid Function Options (AtoB): Computations Relative to: – Center of Mass Center of Cubelet 1 is model Ŧ Cube Side (Angstrom): Ŧ 5 Add theoretical hydration (PDB only) 2 Apply Cubic Grid re popping Adjust Overlap Options Expand Beads to Tangency Enable ASA screening ☑ Help Close Finished with popping and radial reduction Rechecking beads View ASA Results Visualize Bead Model 0 previously buried beads are exposed by rechecking Finished rechecking beads Batch Mode/Cluster Operation View Bead Model File Build bead model completed Load Single Bead Model File 8RAT 1 All options set to default values SAXS/SANS Functions Automatically Calculate Hydrodynamics Begin hydrodynamic calculations Hydrodynamic Calculations: Model 1 will be included Calculate RB Hydrodynamics SMI Calculate RB Hydrodynamics ZENO Processing model 1 bead count 246 vbar 0.71 Using 98 beads for the matrix Show Hydrodynamic Calculations Open Hydrodynamic Calculations File Supermatrix inversion Cycle 1 of 3 Supermatrix inversion Cycle 2 of 3 Select Parameters to be Saved Save parameters to file Supermatrix inversion Cycle 3 of 3 Calculate hydrodynamics completed BEST Model classifier Close Stop 100% Help Config

lease Somo Hydrodynamic Results					
SOMO Hydrodynamic Results (Water at 20°C):					
Total Beads in Model:			246		
Used Beads in Model:			98		
Molecular Mass:			1.3681e+04 Da		
Part. Specif. Volume:			0.710 cm^3/g		
s(20,w):			1.93e+00 S		
D(20,w), transl.:			1.18e-06 cm/sec^2		
Stokes Radius:			1.81e+00 nm		
Radius of Gyration:			1.48e+00 nm		
Relaxation Time, tau(h):			7.81e+00 ns		
Intrinsic Viscosity:			3.24c+00 cm^3/g		
Load ASA Results File			View Bead Model File		
Load Full Hydrodynamics Results File					
Help			Close		
Hydrodynamic Calculations:					
Calculate RB Hydrodynamics SMI			Calculate RB Hydrod	dy.	
Show Hydrodynamic Calculations			Open Hydrodynamic	C	
Select Parameters to be Saved			Save parameters to fil	le	
BEST M	odel classifier	Stop			
Help	Config	100%			

🌺 SOMO Solution Modeler				
Lookup Tables S	SOMO MD	PDB	Configuration	
PDB Functions:				
Select Loo	okup Table		C:\Program Files	s\UltraSca
Batch Mode/Cl	uster Operati	ion		
Load Single PDB File			rogram Files\Ultr	ascan\so
Please select a P	DB Structure	:	Model: 1	
View/Edit PDB File PDB Editor				
SAXS/SANS Functions				
Run	DMD			
В	D			
Bead Model Functions:				
Bead Model Suffix:		A	20R50hiC	
Overwrite exis	ting filename	s	Add auto-gen	erated su
Build SoMo Bead Model		Build Ato	B (Grid)	
Build SoMo Overlap Bead Model		Grid E	xisting Be	
View ASA Results			Visu	alize Bea
Batch Mode/Cluster Operation			View	Bead Mo
Load Single Bead Model File		8RAT_		
SAXS/SANS Functions		Automatically	/ Calculat	
Hydrodynamic Calculations:				
Calculate RB Hydrodynamics SMI		Calculate RB Hydrod		
Show Hydrodynamic Calculations		Open Hydrodynamic 0		
Select Parameters to be Saved		Save parameters to file		
BEST	Model class	sifier	Stop	
Help	Config			100%

Other hydrodynamic computations methods

ZENO – Developed by Mansfield, Kang and Douglas (Stevens Institute and NIST)

BEST – Developed by S. Aragon, SFSU, CA

Scientific Principle of Program:

The Zeno computational method involves enclosing an arbitraryshaped probed object within a sphere and launching random walks from this sphere. The probing trajectories either hit or return to the launch surface ('loss') as shown in the figure for a model soot particle aggregate, whereupon the trajectory is either terminated or reinitiated.

The fraction of random walk trajectories that hit the probed object determines its capacity C (hydrodynamic radius) and the electric polarizibility tensor α and [η] are estimated similarly.

ZENO: A Monte Carlo Numerical Path Integrator

 $\beta = \frac{\# hits}{\# attempts}$ $R_{H} = \beta R$ $fr = 6\pi \eta R_{H}$ $D = \frac{kT}{6\pi \eta R_{H}}$

Escaping path

Douglas & Zhou & Hubbard, *PRE*, Vol 49, Page 5319, (1994).

Douglas & Garboczi, Adv. Chem. Phys, Vol 91, Pages 85-153,(1995).

Mansfield et al., *PRE*, Vol 53, Vol 64, Pages 061401-16, 2001

ZENO computes:

electric Polarizability Tensor,
self-capacity,
intrinsic conductivity
Intrinsic viscosity
hydrodynamic radius
translational diffusion coefficient
translational friction coefficient
radius of gyration
structure factor...
of arbitrarily shaped objects

http://web.stevens.edu/zeno/

BEST uses a very precise boundary element numerical solution of the exact formulation of the hydrodynamic resistance problem with stick boundary conditions to compute the full transport tensors in the center of resistance or the center of diffusion for an arbitrarily shaped rigid body, including rotation-translation coupling.

The input for BEST is a triangulation of the solvent-defined surface of the molecule of interest, given by Connolly's MSROLL. The triangulation is prepared for BEST by COALESCE, a program that allows user control over the quality and number of triangles to describe the surface. The computations are repeated for a series of triangulated structures with different number of plates, and extrapolated to zero plate size.

How to reliably test the methods?

- We chose to investigate in depth only the translational friction data, namely $D^0_{t(20,w)}$ and $s^0_{(20,w)}$.
- We have collected literature data, and carefully analyzed them for proper extrapolation and reduction to standard conditions.
- We selected PDB crystal structures from the same species as the experimental data.
- We performed the computations on those structures using SoMo, SoMo+Zeno, AtoB with two different grid sizes, BEST (all using the US-SOMO interface), and HYDROPRO (externally).

Test proteins used

#	Monomeric proteins	MW	#	Multimeric proteins	MW
1	Cytochrome c (1HRC)	12357.5	14	Superoxide dismutase (2SOD)	31442.2
2	Ribonuclease A (8RAT)	13683.8	15	β-Lactoglobulin (1BEB)	35224.7
3	α-Lactalbumin (1A4V+carb)	15784.7	16	α-Chymotrypsin (4CHA)	50473.5
4	Lysozyme (1AKI)	14306.7	17	Triosephosph. Isom. (1YPI)	52971.4
5	Myoglobin horse CO (1DWR)	17568.3	18	Hemoglobin CO (1HCO)	64559.7
6	Soybean Trypsin Inh. (1AVU)	19962.8	19	Citrate Synthase (1CTS)	97845.5
7	β-Trypsin (1TPO)	23335.9	20	Inorganic Pyrophosph. (1FAJ)	117339.0
8	Trypsinogen (1TGN)	23182.7	21	G3PD apo (2GD1)	143787.8
9	α-Chymotrypsin (4CHA)	25236.5	22	G3PD holo (1GD1)	146437.7
10	Chymotrypsinogen A (2CGA)	25659.0	23	LDH pig H + NAD (5LDH)	148942.6
11	Carbonic Anhydr. B (2CAB)	28820.5	24	LDH pig M + NAD (9LDH)	149063.5
12	Pepsin (4PEP)	34588.6	25	Aldolase (1ADO)	157136.0
13	H. Serum Albumin (1AO6)	66428.6	26	Catalase (4BLC)	235782.0
			27	β-Galactosidase (1BGL)	465557.0

Overall performance of the different hydrodynamic modeling methods: *D_t*

Comparison between hydrodynamic calculations methods using 21 test proteins: translational diffusion coefficient

Overall performance of the different hydrodynamic modeling methods: s

Comparison conclusions:

- *D_t* is always better matched than *s*. This is likely due to poor psv knowledge/estimation.
- HYDROPRO and BEST both underestimate D_t and s. This is likely due to an excessive expansion of the surface in an attempt to account for hydration.
- SoMo with overlap removal overestimates D_t and s. This is likely due to an excessive shrinkage of the hydrated beads notwithstanding the outward translation.
- AtoB with a 5 Å grid appears to produce reasonable hydrated surfaces leading to very good D_t matching.
- The combination of SoMo models without overlap removal and Zeno computations produces the best D_t matching.